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Abstract

This technical report provides a survival analysis of the Florida Cancer Data System
(FCDS). The technical report consists of two chapters, an appendix, and a separate
supplement. Chapter 1, Data Management, states the problem of survival analysis and
it creates the analysis dataset. The Human Mortality Database is used to create the
population mortality file. The concept of net (not crude) survival in a relative (not cause-
specific) framework is central to survival analysis of FCDS. Chapter 2, Survival Analysis,
illustrates the four conceptual approaches to survival analysis of FCDS. An example of
net survival in the relative framework is estimated 10-year survival of adult lung cancer
patients diagnosed in Florida 1999-2003. The appendix provides a sensitivity analysis.
The separate supplement (Alexandersson

.

, 2017a

.

) discusses alternative software such as
SAS and SEER*Stat, and it includes code for running R in Stata.

This technical report is also a data science project using mostly Stata. Here,
data science is defined as programming the workflow of data analysis. Important
Stata commands are odbc load for importing data from the FCDS database, stnet
and strs for survival analysis, and texdoc and tabout for reporting. FCDS fol-
lows the standards of the North American Association of Central Cancer Registries
(NAACCR). Currently, the SAS macro “CalculateSurvivalTimeInMonths.sas” (http:
//seer.cancer.gov/survivaltime/

.

) is required for creating survival analysis variables
according to the NAACCR standards. The main advantage of data science is repro-
ducibility. Stata is used for estimating net survival because only Stata has implemented
a life-table (actuarial) version of the Pohar Perme estimator of net survival. Pohar
Perme estimation of net survival is useful because other approaches tend to overesti-
mate survival. A life-table version is useful because FCDS releases birth year only, not
full birth dates, which affects the matching of the survival times against the life tables.
A companion monograph (Alexandersson

.

, 2017b

.

) provides net survival rates for all ten
FCDS cancer site groups, and those rates are calculated as explained in this technical
report.

Keywords: net survival, relative framework, Pohar Perme, life table, Stata, stnet,
data science.
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Chapter 1

Data Management

1.1 Introduction
This technical report provides a survival analysis of the Florida Cancer Data System
(FCDS). Survival analysis is just another name for time-to-event analysis. The point of
survival analysis is to follow subjects over time and observe at which point in time they
experience the event of interest. Population-based cancer survival analysis deals almost
exclusively with the time from diagnosis of cancer to death. The concept of net (not
crude) survival in a relative (not cause-specific) framework is central to survival
analysis of FCDS.

FCDS is Florida’s statewide cancer registry. In 1978, the Florida Department of
Health (DOH) contracted with the Sylvester Comprehensive Cancer Center (SCCC)
at the University of Miami School of Medicine to design and implement the registry.
FCDS has been collecting incidence data since 1981. In 1994, FCDS became part of the
National Program of Cancer Registries (NPCR) administered by the Centers for Dis-
ease Control (CDC). Through this program, CDC provides funding for states, such as
Florida, to enhance their existing registry to meet national standards for completeness,
timeliness and data quality. The standards are set forth by the North American As-
sociation of Central Cancer Registries (NAACCR), the American College of Surgeons,
Commission on Cancer (ACoS/CoC) and the Surveillance Epidemiology and End Re-
sults (SEER) reporting program of the National Cancer Institute (NCI). Florida has
one of the highest crude incidence rate of cancer in the nation with a 18.8 million
population1

.

residing in 67 counties.
Two hundred thirty hospitals report over 200,000 cases annually, which when undu-

plicated, translate into approximately 115,000 newly diagnosed cases per year. At this
time, the FCDS database contains almost 4 million cancer incidence records.2

.

FCDS
also maintains a cancer mortality file based on data provided from the State of Florida
Bureau of Vital Statistics. The mortality data are linked with the incidence data and
provide access to “passive” follow-up data. NPCR-funded states such as Florida are not

1Data source: 2010 Census, see https://www.census.gov/quickfacts/table/PST045216/12#

.

.
2The count in the so called materialized view (see below) was 3,889,838 on May 10, 2017.
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funded for active follow-up. To obtain more complete death information, CDC funds
Florida to conduct NDI linkage at least every other year. Cases not known to be de-
seased by the NDI linkages will be assumed alive and censored at the end of the study
period. This is known as presumed alive.

The survival analysis of FCDS is also a data science project using Stata. In principle,
the goal of scientific publication is to enable reproducibility of research findings. To
meet this goal, one should share the underlying code and data. To work reproducibly,
one programs the workflows of data analysis. The popular term for programming the
workflow of data analysis is Data Science. See figure 1:

Figure 1.1: A standard model of data science (Wickham and Grolemund

.

, 2016

.

, ix).

The primary computing language is Stata because currently only Stata can estimate
net survival in a relative framework using life tables. Stata is less popular for data
science than R and Python because Stata is commercial, and it has few capabilities in
machine learning and in document authoring. For this data science project, machine
learning is irrelevant so the Stata issue is document authoring.

Stata is partially dependent on SAS for the project. This report uses Stata 14.23

.

and SAS 9.3. For Stata, type

. update query

in Stata and follow the instructions to ensure that you are up to date. The “dot
prompt” is Stata asking for something to do. Stata has excellent online help. To obtain
help on a command (or function) type help command_name, which displays the help
on a separate window called the Viewer. Or just select Help|Stata Command... on
the menu system. If you do not know the name of the command you need you can
search for it. Stata has a search command that will search the documentation and
other resources, type help search to learn more. For the report, you will need the

3Stata 15 was released on June 6, 2017. The main new applicable command is putpdf to create PDFs
with embedded Stata results using Markdoc instead of LaTeX. The user-written Stata Markdown
command markstat was released on September 25, 2017 (Rodríguez

.

, 2017

.

). markstat can produce
HTML and PDF documents with the same script and it has other distinctive features such as cleaner
scripts and support of citations.

3



user-written programs stnet (Coviello et al.

.

, 2015

.

) and strs (Dickman and Coviello

.

,
2015

.

) for survival analysis, and texdoc (Jann

.

, 2016

.

) for document authoring.
Although this report should be useful for anyone who wants to analyse FCDS survival

data, there are several constraints. First, I use Stata (for Windows). The main software
alternatives are R and SAS. Other alternatives are Python and SEER*Stat. A separate
Supplement has code for R and some advice for users of Python, SEER*Stat, and SAS
respectively (Alexandersson

.

, 2017a

.

). A second constraint is that the analysis dataset
used for this report and your own analysis dataset will differ because the source data
are dynamic. Finally, the raw data are confidential and may not be shared with the
public. You need an approved data request if you are not affiliated with FCDS and
want to similar ad hoc data.

This report is justified, it is argued here, for three reasons. First, there is a lack
of reproducible research on FCDS data. The term reproducible research refers
to the idea that the ultimate product of research is the paper along with the linked
executable code and data. According to a 2016 poll of 1,500 scientists, 70% of them
failed to reproduce another scientist’s experiments and 50% failed to reproduce their
own experiment (Baker

.

, 2016

.

). Reproducibility or re-analysis using the same data is
easier than replication using new data. Public use datasets would help. NAACCR soon
will provide a CINA public use (non-confidential) dataset for NCI-SEER data.4

.

FCDS,
which instead belongs to CDC-NPCR, does not provide a public use dataset at the
record level. FCDS provides public use datasets but only at the aggregate, non-record
level.5

.

In addition to lack of data, a second big problem for reproducibility is lack of
code. This FCDS technical report of FCDS data is reproducible by showing the code
that was used and how to request the data.

Second, FCDS data and SEER data differ in some important ways. For survival
analysis, the most important difference between FCDS and presumed-alive SEER data
is that FCDS, unlike SEER, does not provide a variable for birth month. The variable
is collected but it is not made available for release. There are other data differences
too, for example in requirements and in quality evaluation. For instance, the SEER
data completion method requires more historical data than does the NAACCR method.
FCDS is NAACCR GOLD certified, not SEER certified.

Third, there is a lack of standard approach to population-based cancer sur-
vival analysis. SEER’s guideline for measures of cancer survival distinguishes between
the survival measure (crude or net) and the framework or estimation method (cause of
death or expected survival) 6

.

. This report will instead apply the guideline in Dickman
and Coviello

.

(2015

.

, 187). The two measures are the same: crude and net survival.
Dickman and Coviello

.

(2015

.

) additionally distinguishes between the framework for es-
timating the chosen measure (cause-specific and relative) and the available estimators.
Also, Dickman and Coviello

.

(2015

.

) but not SEER prioritizes the measures over the
framework.

The technical report consists of two chapters, an appendix, and a supplement. Chap-
ter 1, Data Management, outlines the four survival analysis approaches and it demon-

4See https://www.naaccr.org/cina-public-use-data-set/

.

.
5See the interactive webpage https://fcds.med.miami.edu/inc/statistics.shtml

.

.
6See https://surveillance.cancer.gov/survival/measures.html

.

.
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strates how to create an analysis dataset. The analysis dataset is for all adult cancer
cases diagnosed in Florida in 1999-2003 with 10-year follow-up. Chapter 2, Survival
Analysis, gives examples of the four survival analysis approaches using the FCDS anal-
ysis dataset from chapter 1. The main recommended approach for survival analysis of
FCDS is net survival in a relative framework using life tables. A provided example is es-
timated 10-year net survival for lung cancer cases diagnosed in Florida from 1999-2003.
The appendix provides a sensitivity analysis. The separate supplement discusses alter-
native software such as SAS and SEER*Stat, and it includes code for running R in Stata
(Alexandersson

.

, 2017a

.

). A companion monograph (Alexandersson

.

, 2017b

.

) provides net
survival rates for all ten FCDS cancer site groups, and those rates are calculated as
explained in this technical report.

1.2 A typology of survival analysis
1.2.1 Basic concepts
Survival analysis is full of jargon: truncation, censoring, hazard rates, etc. The key to
mastering survival analysis lies in grasping the jargon.

By time, we mean analysis time such as years of age or days since diagnosis. From
now on, we will write time to mean time as you have it recorded in your data and t to
mean analysis time. Analysis time is like time, except that 0 has a special meaning; t=0
is the time of onset of risk, the time when failure first became possible. Analysis time is
usually not what is recorded in a dataset. A dataset of patients might record calendar
time. Calendar time must then be mapped to analysis time. The letter t is reserved
for time in analysis-time units. The term time is used for time measured in other units.
The origin is the time corresponding to t=0, which can vary subject to subject. That
is,

t =
time− origin

scale

By event, we mean failure event such as death, disease, relapse, recovery or any
designated event under analysis. The failure event is of special interest in survival
analysis, but there are other important events, such as the exposure event, from which
analysis time is defined.

Many concepts in survival analysis depend on some understanding of mathematical
statistics. The three key mathematical functions in survival analysis are the survival
function, S(t); the hazard function, h(t); and the cumulative hazard function, H(t). The
three functions are essentially just transformations of one another.

Let the random variable T be the survival time (that is, time to event) since the
origin of the study (t=0). We shall assume that T is continuous unless we specify
otherwise. The survival function, S(t), is the probability of surviving beyond time t:

S(t) = P (T > t)

The survival function is equal to one at t=0 and decreases towards zero as t goes
to infinity. As defined here, it is right-continuous, that is, estimated at the right-
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hand endpoint. Sometimes, the survival function is instead defined as S(t) = P (T >=
t) which is left-continuous, that is, estimated at the left-hand endpoint. The issue
arises with discrete (step-function) survival analysis, e.g., the Kaplan-Meier estimate
discussed later. The two most common methods for estimating the survival function
are the actuarial (life-table) method and the Kaplan-Meier (product-limit) method.
A life table tabulates the general population mortality rate by various demographics
usually age, sex, and calendar period, but also sometimes by sub-region, ethnicity, and
socio-economic status. Life table methods are well-suited to cancer registry data, where
datasets are large and exact survival times in days cannot be established with any
precision.

The hazard function, h(t), is the instantaneous rate of failure, meaning that it has
units 1/t. To consider a formal definition of the hazard, first consider an event occurring
in a time interval from t to t + ∆ (where ∆ is positive), that is, t < T ≤ t + ∆. The
hazard function is the probability that, given that a subject has survived beyond time t,
he or she fails in the next small interval of time, divided by the length of that interval:

h(t) = lim
∆→0

P (t < T ≤ t+∆ | T > t)

∆

The cumulative hazard function, H(t), is the integral of the hazard function h(t),
from 0 (the onset of risk) to t. It is the total amount of risk, that is, the area under the
hazard function up to time t:

H(t) =

∫ t

0

h(u)d(u)

The relationship between the cumulative hazard function, H(t), and the survival
function, S(t) is

S(t) = exp {−H(t)}

H(t) = −ln {S(t)}

Two common features in survival data are right-censoring and left-truncation. Cen-
soring occurs when subjects are observed for the whole duration of a study, but the
exact times of their failures are unknown. In common usage, censoring without a mod-
ifier means right-censoring. Left-censoring occurs when the exact time of failure is
unknown because the event has not happened by the end of the observation period.
An observation is right-censored when the exact time of failure is unknown because the
event happened after the end of the observation period. A subject leaves the study
before an event occurs (withdraws or is lost), or he study ends before the event has
occurred. For example, a patient’s time of death is right censored if the patient survives
until the end of a study. Interval-censoring occurs between two known time points but
we do not observe exactly when failure occurred.

Truncation, unlike censoring, occurs when subjects are observed only if their failure
times fall within a certain observational period of study. Truncation is deliberate and
due to study design. Left-truncation occurs when subjects have been at risk before
entering the study (a.k.a. “delayed entry”). Right-truncation occurs when the entire

6



study population has already experienced the event of interest. Right-truncated data
typically occurs in registries. FCDS includes only subjects who developed cancer, and
therefore survival data obtained from FCDS will be right-truncated. Right-truncation
is much more difficult to accommodate than left truncation. Therefore, right-truncation
is almost always ignored in models on cancer registry data. Interval-truncation occurs
when gaps in the data exist and the researcher does not know whether an event or not
has occurred in the time gap in question.

Due to the presence of right-censored and left-truncated data, most models and
estimation methods are based on the hazard function. Examples are the Kaplan-Meier
estimate of the survival function and the Cox proportional regression model.

The problem with ordinary least-squares (OLS) linear regression for survival analysis
is with the assumed normality of the residuals, ej (Cleves et al.

.

, 2016

.

, 2). Substituting a
more reasonably distributional assumption for ej leads to parametric survival analysis.
Semiparametric survival analysis make assumptions about covariates but not about the
distribution of failure times. Nonparametric survival analysis make no assumptions
about neither the covariates nor the distribution of failure times.

In nonparametric analysis, the effects of covariates are not modeled. The Kaplan-
Meier function is, basically, the life table method where the interval size is decreased
towards zero so that the number of intervals tends to infinity. The Kaplan-Meier func-
tion is also known as the product-limit method since it is a limit of the life-table method
where S(t) is estimated as a product of interval-specific proportions. In small samples,
the Kaplan-Meier product-limit estimator is better when estimating the survival func-
tion and the Nelson-Aalen estimator is better when estimating the cumulative hazard
function. In very large samples, it does not matter whether you use the Kaplan-Meier
estimator or the Nelson-Aalen estimator. The log-rank test is perhaps the most com-
monly used nonparametric test for comparing two survival curves. Several nonpara-
metric tests are available, including weighted log-rank tests. Nonparametric analysis is
always a useful starting point.

In most real-world applications, you will be forced into parametric or semiparametric
analysis. The Cox proportional hazards model, which assumes that covariates multi-
plicatively shift the baseline hazard function, is by far the most popular semiparametric
model. When subjects are tied (fail at the same time) and the exact ordering of failure
is unclear, the situation requires special treatment. There are many ways to test the
proportional hazards assumption. The hazard-ratio estimate is almost routinely used to
summarize the difference between two groups for the Cox proportional hazards model.
Alternative summary measures are based on the restricted mean survival time (RMST).

In parametric models, time plays a real role. The exponential model is the simplest
of the parametric survival models because it assumes that the baseline hazard is con-
stant. Flexible parametric models are more popular because they are more flexible. For
example, flexible parametric models can include cure models. When net survival is es-
timated in the relative framework, the cure fraction is the proportion of cancer patients
whose survival experience is equivalent to the general cancer-free population. Another
example, flexible parametric models can be on the log-hazard scale; see strcs.

The event of interest can occur more than once in a participant, for example re-
currence of cancer. The majority of survival analyses focus only on time to the first
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event. Several statistical models have been proposed for analysing multiple events. The
models are widely known as multistate or semi-competing risk models. When death
is the outcome, then clearly it is not possible to have more than one event.

Competing risks are a special case of multistate models in which each of the
different events are absorbing states. The two most important measures for competing
risks are the cause-specific hazard and the cumulative incidence function (CIF). The
cause-specific hazard is used instead of the hazard or cumulative hazard. The CIF is
used instead of the survival function. The CIF is also known as crude probability. In
contrast, net probability for standard non-competing risks is also known as marginal
probability.

Some research questions are complicated for which joint modeling of longitudinal
and survival data are appropriate. Three types of joint analysis may be considered: 1)
evaluation of the effects of time-dependent covariates on the survival time; 2) adjustment
for informative dropout in the analysis of longitudinal data; and 3) joint assessment of
the effects of baseline covariates on the two types of outcomes. Multistate models, joint
models, and other advanced models such as multilevel models are beyond the scope of
the report.

For a Stata-specific introduction to survival analysis, see Cleves et al.

.

(2016

.

). In
Stata, the command snapspan converts snapshot data to time-span (duration form)
data. The command stset declares time-span data to be survival-time data. In Stata,
events occur at the end of the recorded time span. The option failure() specifies the
failure event. The option id() specifies the ID variable if you have multiple-record data.
Getting the stset right is the key to survival analysis in Stata.

The four most common measures of survival in the literature are overall survival,
relative survival ratio, crude survival, and net survival (Perme et al.

.

, 2016

.

, 2). Overall
(a.k.a. observed or all-cause) survival is the probability that a patient is still alive at a
certain time point t after the diagnosis. The most frequently used method for calculating
the observed survival is the Kaplan-Meier method. The relative survival ratio compares
the overall survival to the expected survival from the general population. Crude survival
is the survival in presence of competing risks. Net survival is the survival in absence of
competing risks. Crude and net survival distinguish between two causes of death: death
due to cancer and death due to other causes. Overall survival and relative survival ratio
do not make this distinction.

A more mathematical way to distinguish between net survival and relative survival
is to distinguish between an average ratio and a ratio of averages. The order of calcu-
lation likely produces different results when you calculate an average ratio or a ratio of
averages. For example, with two values 1/2 and 3/4, the average ratio is 62.5% and the
ratio of averages is 67%. Yule

.

(1934

.

) noted that a relative death or mortality rate can
be either an average ratio or a ratio of averages. Similarly, Perme et al.

.

(2012

.

) noted
that net survival is the average ratio of overall and population survival whereas relative
survival ratio is the ratio of averages of overall and population survival.
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1.2.2 Approaches
It is important to settle on a typology since there are many synonyms for the same con-
cept. This technical report uses the typology in Dickman and Coviello

.

(2015

.

, 187). The
typology distinguishes between the measures (crude and net probabilities), the frame-
work (cause-specific or relative) for estimating the chosen measure, and the estimators
available within the chosen framework. Based on the research question, we estimate
either crude survival which accommodates the competing risks or net survival which
ignores the competing risks. It is a 3-step approach: First, one determines the measure.
Second, one determines the framework. Third, one determines the estimator.

Perme et al.

.

(2016

.

) proposed a similar typology and survival analysis approach. The
Perme typology uses data setting instead of framework. The Perme approach has only
two steps: First, one determines the measure. Second, one determines the estimator
within a given data setting. The author prefers the Dickman typology because both
data settings or frameworks require assumptions.

The Dickman typology and the Perme typology both differ sharply from the tradi-
tional NCI typology on the web page https://surveillance.cancer.gov/survival/
measures.html

.

. The NCI typology uses estimation method (cause of death and ex-
pected survival) instead of framework or data setting. The resulting cells, for example
“relative survival” and “cause-specific survival”, are “survival statistics”. Each typology
needs to be evaluated on its own merits. The author does not use the NCI typology
primarily because it ignores the Pohar Perme estimator of net survival.

The cause-specific framework requires accurate classification of cause-of-death (COD).
At FCDS, the COD variable is NAACCR item #1910 which requires additional approval
from the Florida Office of Vital Statistics. The relative framework requires appropriate
estimation of expected survival, which can be done using either life tables or modeling.
Figure 2 is a 2*2 table of the four survival approaches (Dickman and Coviello

.

, 2015

.

,
187), and the recommended FCDS usage.

Figure 1.2: Survival analysis approaches (Dickman and Coviello

.

, 2015

.

, 187) and recom-
mended FCDS usage.
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Crude survival in a cause-specific framework typically is useful for registry-based
randomized controlled trials (RRCTs). RRCTs are discussed in, for example, Li et al.

.

(2016

.

). For FCDS, an RRCT would probably require a linkage data request and possibly
also follow-back investigation of the matched patients. An alternative to RRCT is FCDS
data enhanced for Comparative Effectiveness Research (CER). FCDS has a CER dataset
but it is only for the diagnosis year 2011 for five counties.7

.

Stata commands for this
approach are stcompet, stcrreg, stpm2, stpm2cif and stcrprep.

Crude survival in a relative framework is useful for patient-risk communication. For
example, if patients do not understand hypothetical-world explanations, one should
report crude (real world) survival rather than estimate net survival and then describe
it as something else. Another example, cancer patients diagnosed today may be more
interested in actual risk than in hypothetical risk. Stata commands for this approach
are strs with the cuminc option which uses life tables, and stpm2cm which is model
based.

Net survival in a cause-specific framework is useful for causal inference with obser-
vational data. The standard estimators, for example as in Kaplan-Meier and in Cox
regression, are for this approach. In addition, Stata 14 has the command steffects
for treatment-effects estimators.

Net survival in a relative framework (Dickman and Coviello

.

, 2015

.

) is the primary
focus in this report. The Stata commands are textttstns, strs and stnet. Age stan-
dardization is recommended. There are three international cancer survival standards
(ICSS) for age standardization according to cancer site. ICSS 1 is for cancer sites with
increasing incidence by age. This covers most cancer sites, including lung cancer. ICSS
2 is for cancer sites with broadly constant incidence by age. ICSS 3 is for cancer sites
that mainly affect young adults.

The age variable is often split into categories. For example, SEER*Stat provides pop-
ulation weights by 5-year and 10-year groups.8

.

The FCDS annual reports use four larger
age groups: 0-14, 15-39, 40-64, and 65+. Unfortunately, these wider age-categories may
not describe the data well.

The often preferred estimator of net survival in a relative framework is the Pohar-
Perme estimator, which was developed for continuous survival times because it is un-
biased. In contrast, a model-based estimator requires a high degree of experience and
expertise (UKIACR

.

, 2016

.

, 8). One possible workaround is to standardize the modeling
so that the result is a cancer survival index (CSI). Johnson et al.

.

(2016b

.

) did this for
SEER in the CINA Survival 2016 (Johnson et al.

.

, 2016a

.

) as “All Sites (Standardized)”.
The CSI has no clinical interpretation. Therefore, the monograph will not display sur-
vival rates for cancers combined. Stata can use the Pohar Perme estimator on discrete
survival times using a life-table approach. The life-table approach is less sensitive than
the time-continuous approach to the precision of survival times (Seppä et al.

.

, 2015

.

).
A life-table approach seems prudent because FCDS has only discrete birth dates (i.e.,
birth years) because DOH allows FCDS to release birth year only, not full date of birth.
See the appendix for a brief comparison with full birth data.

Four different approaches for relative survival calculation are cohort, complete, pe-
7See https://fcds.med.miami.edu/inc/cer.shtml

.

.
8See http://seer.cancer.gov/stdpopulations/survival.html

.

.
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riod, hybrid. The major difference in the the four approaches is in the case selection.
The cohort approach is recommended when publishing standard and routine data ta-
bles, and when making international comparisons (UKIACR

.

, 2016

.

, 9). Therefore, this
report will use the cohort approach despite that it is the least up-to-date.

It is difficult to recommend typical FCDS usage for each survival analysis approach
as has been done in this report. For example, you typically use life tables in the relative
framework not only for net survival but also for crude survival. However, the typical
usage or way in which the life tables are used differs in the two approaches depending
on the core idea: being technically correct as in life tables or reducing the technical
jargon as in risk communication.

1.3 Data management
1.3.1 “Import”: How to access the FCDS data
All new data requests must be submitted to FCDS via the Data Request Automated
Management System (DREAMS). There are specific procedures and fees for data release
based on the category of request. For more information about FCDS data requests, click
on the link “Data Requests” on the FCDS website.9

.

The data requirements for survival analysis are the same regardless of type of data
request. As a data requestor, you need an approved ad hoc data request or an approved
linkage data request for doing survival analysis. See the FCDS webpage for details
about FCDS data requests. The FCDS database is in Oracle 11. To make internal
queries easier, FCDS has developed a materialized view named “mv_datarequest”. A
materialized view is a table that stores a snapshot of the query. By materializing
the view, the Stata query below runs on my PC in 10-15 seconds instead of 10-15
minutes. The Stata SQL statement is easier to maintain in a separate local macro, which
here is named “sql_statement”. The materialized view specifies the NAACCR variable
names, for example “PATIENT_ID_NUMBER_N20”. FCDS recently developed a tab
in DREAMS named “Extract Criteria” for selecting rows (a.k.a. records in a database
or observations in a dataset). Three types of extract criteria are possible for new data
requests from the tab:

• Demographics - Required Sex, Ethnicity, Race, Vital Status, County of Residence
at DX, Age at DX

• Tumor characteristics - Required Years of DX, Primary Site, ICDO3 Morpholo-
gies, Stage at DX

• Any Additional Characteristics - Optional <Variable Name> <Parameters>

The FCDS website lists the number of new cancer cases each year. The structure of
the published annual reports has remained the same since 2009. The published yearly
counts for 2009-2013 are 103,783 (2009), 103,855 (2010), 107,082 (2011), 106,166 (2012)
and 108,829 (2013). The counts in the analysis dataset will not match the published

9See https://fcds.med.miami.edu/inc/datarequest.shtml

.

.
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counts for three reasons: 1) I will remove summary stage errors, 2) I will exclude single
non-Florida observations, and 3) the published numbers are typically not updated. The
published counts and rates instead use the static table RATES_ABSTRACT. Here is
the Stata code for the SQL statement in this report:

. local sql_statement ///
> SELECT ///
> Patient_Id_Number_N20, ///
> Addr_at_DX_State_N80, ///
> County_at_DX_N90, ///
> Race_1_N160, ///
> Sex_N220, ///
> Age_at_Diagnosis_N230, ///
> Birth_Year_N240, ///
> Sequence_Number_Central_N380, ///
> Date_of_Diagnosis_N390, ///
> Type_of_Reporting_Source_N500, ///
> SEER_Summary_Stage_2000_N759, /// for dx_year >= 2001
> SEER_Summary_Stage_1977_N760, /// for dx_year 1981-2000
> Derived_SS2000_Flag_N3050, /// _N3040 is omitted as a mistake on purpose
> Date_of_Last_Contact_N1750, ///
> Vital_Status_N1760, ///
> FCDS_Site_Group_N2220 ///
> FROM mv_datarequest ///
> WHERE (County_at_DX_N90 between 1 and 133) and /// FL counties (remove 998, 999)
> (Date_of_Diagnosis_N390 between  1́9990101 ́ and  2́0131231 ́) and ///
> ( (substr(Date_Of_Diagnosis_N390,1,4) <  2́001 ́ and ///
> SEER_Summary_Stage_1977_N760 > 0 ) or ///
> (substr(Date_Of_Diagnosis_N390,1,4) >=  ́2001 ́ and ///
> SEER_Summary_Stage_2000_N759 > 0) or ///
> FCDS_Site_Group_N2220 = 55 or SEER_Summary_Stage_2000_N759 is null) and ///
> FCDS_Site_Group_N2220 <= 80 and Age_at_Diagnosis_N230 <> 999 and ///
> Derived_SS1977_Flag_N3040 in ( ́1 ,́ 2́ )́ and /// no SS_1977 error
> Derived_SS2000_Flag_N3050 in ( ́1 ,́ 2́ )́ and /// no SS_2000 error
> EXISTS (SELECT abshist_patient_id /// exclude single non-FL obs
> FROM abshist /// table
> WHERE abshist_patient_id = Patient_Id_Number_N20 and ///
> abshist_central_seq = Sequence_Number_Central_N380 and ///
> (abshist_medical_facility between  ́1100 ́ and  9́999 ́ or ///
> abshist_medical_facility in ( 0́510 )́));

For the required demographics, I only selected all Florida counties. For the required
tumor characteristics, I only selected years of diagnosis 1999-2013; the code differs
slightly from the preset SQL script for FCDS staff. The rest of the WHERE clause
in the SQL code above is an example of possible optional additional characteristics
translated into SQL. The code “FCDS_Site_Group_N2220 <= 80” above selects only
malignant sites. Summary stage is at least localized (values 1-9) except urinary bladder
cancer can be in situ (value 0); this is both FCDS and SEER standard for reporting.

The final part of the SQL WHERE clause is the SQL statement EXISTS which uses
the table ABSHIST. Therefore, it is not available in DREAMS. It removes records that
are consolidated entirely on out of records. Arguably the code should be added to all
data requests and for routine reporting (unless DOH says otherwise) or until the code
is implemented in the materialized view itself.

The easiest way to hide the ODBC password is to put it in a local macro and then

12



hide the command but keep the output.10

.

texdoc stlog, cmdstrip
local password "*******"
texdoc stlog close

The timer command starts, stops, and reports interval timers. This can be useful for
SQL queries because theu can take a long time to run. In Stata, you create SQL queries
using the odbc load command. The exec() option allows you to select only the wanted
rows. Stata is case sensitive.

. timer clear

. timer on 1

. odbc load, ///
> user(webuser) password( ̀password )́ dsn(Oracle64) /// connect_options
> datestring clear exec(" s̀ql_statement "́) // load_options
. timer off 1
. rename _all, proper

The easiest approach to organizing project files is to start with a carefully designed
directory structure. The first step in naming files and directories is to pick a short
mnemonic for your project such as DOH. My working directory is F:/DOH/. Stata uses
the forward-slash to separate directory levels on all platforms, even Windows. You can
set the working directory with the command cd but I do not recommend it. It is better
to use relative paths, not absolute paths.

The data requestor does not have to worry about the workings of DREAMS or
SQL queries. FCDS should provide the data requestor a comma-delimited dataset. The
dataset in this report is from 2017 and for FDOH, so I name it “2017_DOH Dataset.txt”.

. pwd
F:\doh
. export delimited using "2017_DOH Dataset.txt", replace quote
file 2017_DOH Dataset.txt saved

The data requestor can use import delimited to import the comma-delimited text
dataset. The default is to read variable names as lowercase. Use the option case(preserve)
to preserve the case. Use option stringcols() to read dates as strings.11

.

. import delimited using "2017_DOH Dataset.txt", clear case(preserve) ///
> stringcols(7 9)
(16 vars, 1,607,209 obs)

1.3.2 “Tidy”: How to clean the FCDS data
The isid command checks for unique identifiers.

. isid Patient_Id_Number_N20 Sequence_Number_Central_N380

10In texdoc, this means using the cmdstrip option. In markdoc, you would instead use
the notation marker /**/. The following posting on Statalist gives more advice about pass-
words for Stata: http://www.statalist.org/forums/forum/general-stata-discussion/general/
6323-encoding-odbc-call-passwords

.

.
11Most statistics software can handle this. But sometimes you need specialized software. A very

useful software for converting datasets is Stat/Transfer at www.stattransfer.com

.

.
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Data cleaning is often an iterative process. Here, the data cleaning process is iterative
due mostly to the need for using a SAS program; there is no available equivalent Stata
program. The background context is that population-based cancer survival analysis
in the United States often is done on SEER data. The SEER data documentation
contains a lot of information.12

.

The most important link is “Months Survived Based on
Complete Dates”.13

.

It contains a SAS program “CalculateSurvivalTimeInMonths.sas”
that uses day information for the survival calculation. The SAS program creates these
five variables for presumed-alive data:

• 1785 Surv-Date Presumed Alive (date_lc)

• 1786 Surv-Flag Presumed Alive (pa_surv_flag)

• 1787 Surv-Months Presumed Alive (pa_surv_mon); This is complete months or sur-
vival

• 1788 Surv-Date DX Recode (date_dx)

• 2220 Record order (record_order)

The date presumed alive variable derives the survival variables. The flag presumed
alive variable will enable analysts to easily select a subset of cases. The months presumed
alive variable is used for the survival analysis.14

.

The survival date of diagnosis recode
is calculated using the date of diagnosis (NAACCR item #390) with imputed values if
the day or month is unknown or not available. The variable for record order addresses
a problem with the variable sequence number central (NAACCR item #380). The
problem is that sequence number central is not chronological if non-federally reportable
tumors are included. That is, to make the sequence numbers 60-89 chronological, you
need a complete date to sort by. Rather than saving a complete date variable, the SAS
program saves a record order variable. Stata needs to run the SAS macro to create the
NAACCR variables because there is no equivalent Stata code.15

.

It is more efficient to run the SAS program “CalculateSurvivalTimeInMonths.sas”
before you clean the data in Stata. The reason is that the SAS program creates new
variables which also need to be cleaned. The SAS program requires text data with fixed
format, at specific column numbers, with a length of 3339 characters.

The easiest solution to create the data that the SAS program needs is to use the
user-written program outfixt. You need the undocumented cap option, which captures
errors that arise with very long lines, and a buffer variable to fill up the observation
(“record” in SAS terminology). The command order can change the variable order but
it is not needed here.

12See http://seer.cancer.gov/analysis/

.

.
13See http://seer.cancer.gov/survivaltime/

.

.
14The variable is calculated as: Survival months = FLOOR((endpoint – date of diagnosis) / days in

a month) The FLOOR function always rounds down, e.g., FLOOR(1.68) = 1. The actual length of
the year is 365.2422 days. Days in a month is assigned to 365.24/12. For comparison, the Gregorian
calendar averages 365.2425 days, and the former Julian calendar averaged 365.25 days.

15The problem is not specific to Stata. For instance, SEER*Prep and SEER*Stat expect the tumors
for a patient to be sorted chronologically.
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Text files are large and time consuming to read and write. You may have to split
the file with the if or in qualifier, if for example you have over a million records. For
early drafts, I selected only lung cancer data. The lung cancer dataset was <250,000
observations and the disk space wwas <1GB which is manageable for repeated runs.

. gen str1 buffer = "z"

. timer on 2

. outfixt _all using "input.txt", ///
> cols( 42 145 156 177 192 193 196 528 530 563 904 905 1160 2116 2126 2340 3339) ///
> flist(%8s %2s %3s %2s %1s %3s %4s %2s %8s %1s %1s %1s %1s %8s %1s %2s %1s) ///
> replace cap dct("2017_DOH Fixed.dct", replace)
(note: file input.txt not found)
. timer off 2

The user-written command saswrapper runs SAS code in Stata. The SAS program
creates five new variables. Two changes are required in the SAS program “CalculateSur-
vivalTimeInMonths.sas”:

(1) Add the working directory. I added x “cd F:/DOH/”; at the top of the program.
(2) Add the %INCLUDE option LRECL.16

.

. timer on 3

. qui saswrapper using CalculateSurvivalTimeInMonths.sas

. timer off 3
The output, unless you change the SAS program more, is the same fixed-format text
data with the filename “myoutputfile.txt”. To read in the dataset, use infix. timer
list lists the times of the timers.

. timer on 4

. infix Patient_Id_Number_N20 42-49 str Addr_at_DX_State_N80 145-146 ///
> County_at_DX_N90 156-158 Race_1_N160 177-178 ///
> Sex_N220 192-192 Age_at_Diagnosis_N230 193-195 ///
> Birth_Year_N240 196-199 Sequence_Number_Central_N380 528-529 ///
> str Date_of_Diagnosis_N390 530-537 Type_of_Reporting_Source_N500 563-563 ///
> SEER_Summary_Stage_2000_N759 904-904 SEER_Summary_Stage_1977_N760 905-905 ///
> Derived_SS2000_Flag_N3050 1160-1160 ///
> str Date_of_Last_Contact_N1750 2116-2123 Vital_Status_N1760 2126-2126 ///
> str date_lc_1785 2305-2312 ///
> surv_flag_1786 2313 ///
> surv_mon_1787 2314-2317 ///
> str date_dx_1788 2318-2325 ///
> FCDS_Site_Group_N2220 2340-2341 ///
> record_order 2510-2511 ///
> using "myoutputfile.txt", clear
(1,607,209 observations read)
. timer off 4
. timer list

1: 32.65 / 1 = 32.6520
2: 1373.39 / 1 = 1373.3910
3: 2241.35 / 1 = 2241.3530
4: 118.29 / 1 = 118.2900

Recall what the timers are for: 1 runs the SQL query, 2 creates the text dataset, 3 runs
16Specify a value of at least 3339. The SAS program runs as a defaults to a record length of 256

characters. The length limitation is documented in SAS Usage Note 15883 at http://support.sas.
com/kb/15/883.html

.

. I added option LRECL=32767; in the program.
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the SAS program, and 4 reads in the SAS-modified text dataset. The timers show that
the slowest timers are 2 and 3. That is, the bottleneck is creating the text dataset and
running the SAS program which takes about 2 hours in total. The time is reduced to
about 8 minutes if we instead would run the program only on the lung cancer data.

A disadvantage of text files is that variable labels are lost. Every variable should
have a variable label. The variable names as variable labels is better than no variable
labels.

. foreach v of varlist * {
2. label variable  v̀ ́ " v̀ "́
3. }

Be careful with capitalizations. The Stata convention is lowercase. In general, rename
long variable names to shorter, yet still informative names. A number of commands
abbreviate long variable names to something that can be difficult to read.

. rename (Patient_Id_Number_N20 Addr_at_DX_State_N80 County_at_DX_N90 ///
> Race_1_N160 Sex_N220 Age_at_Diagnosis_N230 Birth_Year_N240 ///
> Sequence_Number_Central_N380 Date_of_Diagnosis_N390 ///
> Type_of_Reporting_Source_N500 SEER_Summary_Stage_2000_N759 ///
> SEER_Summary_Stage_1977_N760 ///
> Date_of_Last_Contact_N1750 Vital_Status_N1760 FCDS_Site_Group_N2220 ///
> Derived_SS2000_Flag_N3050) ///
> (pid_20 state_80 county_90 race_160 sex_220 age_dx_230 doby_240 ///
> seq_380 date_dx_390 rpt_src_500 ss2000_759 ss1977_760 date_lc_1750 ///
> vital_1760 site_group_2220 ss2000_fl_3050)

You can easily check for unique ID variables. You typically want to sort by the ID
variables. As mentioned in the introduction, sequence order is not chronological for
values 60-89. Therefore, seq_380 is no longer the within-person identifier after running
the SAS program. Instead record_order is the within-person identifier.

. isid pid_20 record_order

. sort pid_20 record_order

1.3.3 “Transform”: How to create the FCDS analysis dataset
Create a variable for the ten cancer site groups that FCDS reports on. Create a variable
for year of diagnosis. Verify that the years are 1999-2013. Document the new variable
with a note and label. Binary variables should always be valued 0 for negative outcomes
and 1 for positive outcomes. Therefore, I recode the variable sex_220 into a new variable
male.

. recode site_group_2220 (36 = 1) (51 = 2) (43 = 3 ) (14/24 = 4) (55 = 5 ) ///
> (1/10 34 35 = 6) (66/67 = 7) (41 = 8) (47 = 9 ) (44 = 10) ///
> (11/13 25/33 37/40 42 45/46 48/50 52/54 56/65 68/80 = 11 "Other") ///
> (99 = .) , ///
> gen(site_10group)
(1588417 differences between site_group_2220 and site_10group)
. label variable site_10group "RECODE of site_group_2220 (1-10)"
. label define sitelab 1 "Lung & Bronchus" 2 "Prostate" ///
> 3 "Breast" 4 "Colorectal" 5 "Bladder" 6 "Head & Neck" ///
> 7 "Non-Hodgkin" 8 "Melanoma" 9 "Ovary" 10 "Cervix" 11 "Other"
. label values site_10group sitelab
. gen dx_year = substr(date_dx_390,1,4)
. destring dx_year, replace
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dx_year: all characters numeric; replaced as int
. assert inrange(dx_year,1999,2013)
. notes dx_year: substr(date_dx_390,1,4)
. label variable dx_year "Year of Diagnosis"
. gen male = sex_220
. replace male = 0 if sex_220 == 2
(754,598 real changes made)
. replace male = . if !inlist(sex_220,1,2)
(740 real changes made, 740 to missing)
. assert male==1 if sex_220==1 // error check
. label variable male "0=Female, 1=Male"

Woods et al.

.

(2012

.

) made a compelling case that full dates (day, month, year) rather
than partial dates (month and year) should be used in population-based cancer survival
studies. FCDS has the additional problem for birth date that only birth year is available
for release due to confidentiality concerns. Birth months and birth days need to be
randomly generated without drawing nonsensical combinations such as 2/30. Days are
more difficult to generate due to leap years. The diagnosis date should also be in a date
format. Survival years is a more natural unit than survival months.

. set seed 12345

. gen dobmr_240 = runiformint(1,12) if !mi(doby_240)

. gen dobdr_240 = runiformint(1,31) if inlist(dobm,1,3,5,7,8,10,12)
(668,292 missing values generated)
. replace dobdr_240 = runiformint(1,30) if inlist(dobm,4,6,9,11)
(534,656 real changes made)
. replace dobdr_240 = runiformint(1,28) if dobm==2 // what if leap year?
(133,636 real changes made)
. gen dob = mdy(dobmr_240, dobdr_240, doby_240)
. format dob %d
. label variable dobmr_240 "Birth month (random)"
. label variable dobdr_240 "Birth day (random)"
. label variable dob "Date of birth (random month and day)"
. gen date_dx = date(date_dx_390,"YMD") // create date format
(3,699 missing values generated)
. label variable date_dx "date_dx_390 in date format"
. gen surv_year = surv_mon_1787 / 12 // create survival year
. label variable surv_year "Survival year"
. format date_dx %td

Recode age at diagnosis into age groups and age-standardized weights. The variables
for age groups are agegr, agegr_prostate, agegr_seer, and agegr_fcds. The variables for
age-standardized weights are icss1, icss_prostate, and icss2. The Stata code for icss1
is the same as in Coviello et al.

.

(2015

.

, 181) except that the variable name here is icss1
instead of standw.

. egen agegr = cut(age_dx_230), at(0 45(10)75 100) icodes
(910 missing values generated)
. egen agegr_prostate = cut(age_dx_230), at(0 55(10)85 100) icodes
(910 missing values generated)
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. recode agegr 0=0.07 1=0.12 2=0.23 3=0.29 4=0.29, gen(icss1)
(1606299 differences between agegr and icss1)
. recode agegr_prostate 0=0.19 1=0.23 2=0.29 3=0.23478 4=0.05522, gen(icss1_prostate)
(1606299 differences between agegr_prostate and icss1_prostate)
. recode agegr 0=0.28 1=0.17 2=0.21 3=0.20 4=0.14, gen(icss2)
(1606299 differences between agegr and icss2)
. label variable agegr "ICSS standard age groups (15-44, 45-54, 55-64, 65-74, 75-99)"
. label variable agegr_prostate "ICSS prostate age groups (15-55, 55-64, 65-74, 75-84, 85-
99)"
. label variable icss1 "ICSS 1"
. label variable icss1_prostate "ICSS 1, age-adjusted for prostate"
. label variable icss2 "ICSS 2"
. recode age_dx_230 ///
> (0/4 = 1 "0-4") (5/9 = 2 "5-9") ///
> (10/14 = 3 "10-14") (15/19 = 4 "15-19") ///
> (20/24 = 5 "20-24") (25/29 = 6 "25-29") ///
> (30/34 = 7 "30-34") (35/39 = 8 "35-39") ///
> (40/44 = 9 "40-44") (45/49 = 10 "45-49") ///
> (50/54 = 11 "50-54") (55/59 = 12 "55-59") ///
> (60/64 = 13 "60-64") (65/69 = 14 "65-69") ///
> (70/74 = 15 "70-74") (75/79 = 16 "75-79") ///
> (80/84 = 17 "80-84") (nonmissing = 18 "85+ years") ///
> , gen(agegr_seer)
(1606427 differences between age_dx_230 and agegr_seer)
. recode age_dx_230 ///
> (0/14 = 1 "0-14") (15/39 = 2 "15-39") ///
> (40/64 = 3 "40-64") (nonmissing = 4 "65+ years") ///
> , gen(agegr_fcds)
(1606427 differences between age_dx_230 and agegr_fcds)
. label variable agegr_seer "SEER age groups (18 groups)"
. label variable agegr_fcds "FCDS age groups (4 groups)"

Create a combined variable for stage group.

. assert ss2000_759==. if inlist(dx_year,1999,2000)

. count if dx_year>=2001 & !mi(ss1977_760) // should be a small number, not used
2,386

. gen stage = ss1977_760 if dx_year<2001
(1,395,031 missing values generated)
. replace stage = ss2000_759 if dx_year>=2001
(1,395,031 real changes made)
. recode stage 0/1=1 2/5=2 7=3 8/9=4, gen(stagegr)
(831414 differences between stage and stagegr)
. label variable stage "Stage (from N760 and N759)"
. label variable stagegr "Stage Group"
. label define stagelab 1 "Localized" 2 "Regional" 3 "Distant" 4 "Unknown"
. label values stagegr stagelab

Exclusions: Data quality exclusions. Verify that there are only valid SS2000. This is
implied from the SQL “WHERE clause” but the researcher does not see the SQL code
and it is best practice to test for serious errors. It is not possible to test ss1977_fl_3040
since it was not selected.

. assert inlist(ss2000_fl_3050,1,2)
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Standard exclusions: The most controversial standard survival analysis exclusion is to
omit children (ages 0-14). Cancer for children is much more difficult to analyze than
cancer for adults for two reasons: The classification of cancer for adults (ICD-O-3)
emphasizes primary site whereas the International Classification of Childhood Cancer
(ICCC) emphasizes morphology, which is more complicated.17

.

The main survival anal-
ysis approach for FCDS for adults is age-standardized net survival in the relative frame-
work. The approach can be used for adults only because age-standardized population
weights (ICSS) are only available for adults.

. drop if !inlist(sex_220,1,2) // Select only male or female
(740 observations deleted)
. drop if age_dx_230<15 // drop children
(8,224 observations deleted)
. drop if !inrange(age_dx_230,0,126) // Select only known age
(0 observations deleted)

Expected survival table exclusions:

. drop if inrange(age_dx_230,100,126) // drop invalid age year
(908 observations deleted)
. assert inrange(race_160,1,32) | inrange(race_160,96,99) // Race W, B, O
. recode race 3/98=3 99=4, gen(racegr)
(31750 differences between race_160 and racegr)
. label variable racegr "Race Group"
. label define racelab 1 "White" 2 "Black" 3 "Other" 4 "Unknown"
. label values racegr racelab

Multiple primary selection: Sequence number central is used to define first vs. multiple
primary cancers. Cancer cases with a sequence number value of 0 or 1 are classified as
first primary cancers, while cancers with a sequence number value of 2 or higher are
classified as multiple primary cancers. Since this technical report is an introduction to
survival analysis, only the first primary is used. In contrast, CINA Survival Johnson
et al.

.

(2016a

.

, 15) allowed for multiple primary cancers per patient but only one record
per patient was included in each survival estimate.

. drop if !inlist(seq_380,0,1) // First Primary Only (Sequence Number 0 or 1)
(314,743 observations deleted)

Survival Calculation Exclusions: The Stata message “observations end on or before
enter()” is the same as “Alive with no survival time” in SEER*Stat.

. drop if !inlist(vital_1760,0,1) // invalid vital status
(0 observations deleted)
. tab surv_flag_1786, mi
surv_flag_1

786 Freq. Percent Cum.

0 2,092 0.16 0.16
1 1,238,598 96.57 96.73
2 135 0.01 96.74
3 2,849 0.22 96.97
8 38,200 2.98 99.94
9 720 0.06 100.00

17FCDS uses the ICCC WHO 2008 specification for child cancers. See https://seer.cancer.gov/
iccc/iccc-who2008.html

.

for the definition of the ICCC variable.
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Total 1,282,594 100.00
. drop if surv_flag_1786!=1 // unknown survival duration
(43,996 observations deleted)

Because of the population mortality file (see below), it makes sense to rename variable
sex_220 to sex. When you save a dataset, you should add a dataset label, a note, and
a data signature.

. rename sex_220 sex

. label variable sex "Sex"

. label define sexlab 1 "Male" 2 "Female"

. label values sex sexlab

. notes: Dataset was created from draft_DOH20170630.do

. label data "Dataset for Survival Analysis, DX Years 1999-2013"

. datasignature set
1238598:39(121503):786573920:3146713717 (data signature set)

. save doh, replace
file doh.dta saved

The following is an overview of the DOH analysis dataset.

. notes
_dta:

1. Dataset was created from draft_DOH20170630.do
dx_year:

1. substr(date_dx_390,1,4)
. datasignature confirm

(data unchanged since 09may2017 15:42)

(Continued on next page)
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. desc
Contains data from doh.dta

obs: 1,238,598 Dataset for Survival Analysis, DX Years 1999-
2013

vars: 39 9 May 2017 15:42
size: 182,073,906 (_dta has notes)

storage display value
variable name type format label variable label

pid_20 float %9.0g Patient_Id_Number_N20
state_80 str2 %9s Addr_at_DX_State_N80
county_90 float %9.0g County_at_DX_N90
race_160 float %9.0g Race_1_N160
sex byte %8.0g sexlab Sex
age_dx_230 float %9.0g Age_at_Diagnosis_N230
doby_240 float %9.0g Birth_Year_N240
seq_380 float %9.0g Sequence_Number_Central_N380
date_dx_390 str8 %9s Date_of_Diagnosis_N390
rpt_src_500 byte %8.0g Type_of_Reporting_Source_N500
ss2000_759 byte %8.0g SEER_Summary_Stage_2000_N759
ss1977_760 byte %8.0g SEER_Summary_Stage_1977_N760
ss2000_fl_3050 byte %8.0g Derived_SS2000_Flag_N3050
date_lc_1750 str8 %9s Date_of_Last_Contact_N1750
vital_1760 byte %8.0g Vital_Status_N1760
date_lc_1785 str8 %9s date_lc_1785
surv_flag_1786 byte %8.0g surv_flag_1786
surv_mon_1787 float %9.0g surv_mon_1787
date_dx_1788 str8 %9s date_dx_1788
site_group_2220 float %9.0g FCDS_Site_Group_N2220
record_order float %9.0g record_order
site_10group float %15.0g sitelab RECODE of site_group_2220 (1-10)
dx_year int %10.0g * Year of Diagnosis
male float %9.0g 0=Female, 1=Male
dobmr_240 float %9.0g Birth month (random)
dobdr_240 float %9.0g Birth day (random)
dob float %d Date of birth (random month and day)
date_dx float %td date_dx_390 in date format
surv_year float %9.0g Survival year
agegr float %9.0g ICSS standard age groups (15-44, 45-54,

55-64, 65-74, 75-99)
agegr_prostate float %9.0g ICSS prostate age groups (15-55, 55-64,

65-74, 75-84, 85-99)
icss1 float %9.0g ICSS 1
icss1_prostate float %9.0g ICSS 1, age-adjusted for prostate
icss2 float %9.0g ICSS 2
agegr_seer float %9.0g agegr_seer

SEER age groups (18 groups)
agegr_fcds float %9.0g agegr_fcds

FCDS age groups (4 groups)
stage float %9.0g Stage (from N760 and N759)
stagegr float %9.0g stagelab Stage Group
racegr float %9.0g racelab Race Group

* indicated variables have notes

Sorted by: pid_20 record_order
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. su
Variable Obs Mean Std. Dev. Min Max

pid_20 1,238,598 2353780 476199.8 117110 3451577
state_80 0
county_90 1,238,598 71.22879 37.16115 1 133
race_160 1,238,598 2.809342 12.58903 1 99

sex 1,238,598 1.471745 .4992012 1 2

age_dx_230 1,238,598 65.65618 13.97542 15 99
doby_240 1,238,598 1939.899 14.72764 1899 1998
seq_380 1,238,598 .1461233 .3532299 0 1

date_dx_390 0
rpt_src_500 1,238,598 1.206108 .9973482 1 8

ss2000_759 1,072,712 3.581854 3.019903 0 9
ss1977_760 167,714 3.575331 3.183914 0 9

ss2000_~3050 1,238,598 1.299857 .4581952 1 2
date_lc_1750 0

vital_1760 1,238,598 .4938971 .499963 0 1

date_lc_1785 0
surv_fl~1786 1,238,598 1 0 1 1
surv_mo~1787 1,238,598 52.82199 50.01748 0 179
date_dx_1788 0
site_gr~2220 1,238,598 43.692 16.76404 1 80

record_order 1,238,598 1.000007 .0026956 1 2
site_10group 1,238,598 5.531535 3.853146 1 11

dx_year 1,238,598 2006.074 4.333879 1999 2013
male 1,238,598 .5282545 .4992012 0 1

dobmr_240 1,238,598 6.499873 3.45094 1 12

dobdr_240 1,238,598 15.7071 8.793045 1 31
dob 1,238,598 -7160.056 5380.394 -22246 14241

date_dx 1,238,598 17004.17 1587.236 14245 19722
surv_year 1,238,598 4.401832 4.168124 0 14.91667

agegr 1,238,598 2.578519 1.237947 0 4

agegr_pros~e 1,238,598 1.724996 1.207749 0 4
icss1 1,238,598 .2380996 .0743179 .07 .29

icss1_pros~e 1,238,598 .2280398 .059128 .05522 .29
icss2 1,238,598 .1873804 .0387052 .14 .28

agegr_seer 1,238,598 13.7087 2.764725 4 18

agegr_fcds 1,238,598 3.530696 .5809905 2 4
stage 1,238,598 3.579944 3.042588 0 9

stagegr 1,238,598 1.972466 1.055118 1 4
racegr 1,238,598 1.154275 .4598755 1 4
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. tab dx_year, mi
Year of

Diagnosis Freq. Percent Cum.

1999 81,390 6.57 6.57
2000 84,496 6.82 13.39
2001 80,839 6.53 19.92
2002 79,921 6.45 26.37
2003 78,719 6.36 32.73
2004 78,728 6.36 39.08
2005 81,329 6.57 45.65
2006 82,077 6.63 52.28
2007 83,190 6.72 58.99
2008 84,798 6.85 65.84
2009 84,855 6.85 72.69
2010 84,498 6.82 79.51
2011 85,134 6.87 86.39
2012 84,046 6.79 93.17
2013 84,578 6.83 100.00

Total 1,238,598 100.00
. tab site_10group, mi

RECODE of
site_group_2220

(1-10) Freq. Percent Cum.

Lung & Bronchus 173,575 14.01 14.01
Prostate 200,488 16.19 30.20

Breast 177,494 14.33 44.53
Colorectal 121,166 9.78 54.31

Bladder 58,760 4.74 59.06
Head & Neck 45,130 3.64 62.70
Non-Hodgkin 47,810 3.86 66.56

Melanoma 49,154 3.97 70.53
Ovary 17,750 1.43 71.96
Cervix 12,562 1.01 72.98
Other 334,709 27.02 100.00

Total 1,238,598 100.00
You no longer need the large text data files. A 100% Stata solution could use temporary
files with the macro tempfile. With the need for SAS, it is easier to use regular
permanent files followed by the Stata command erase. The two text data files are
about 5.5GB each.

. erase input.txt

. erase myoutputfile.txt
U.S. death rates are available from the Human Mortality Database.18

.

Dickman et al.

.

(2016

.

, 97-98) provide instructions for how to create a population mortality file in Stata.
You must convert the death rates to survival probabilities.

. infile _year _age female male total using "Mx_1x1.txt" ///
> if (inrange(_year,1999,2013) & _age<100), clear
 ́Year ́ cannot be read as a number for _year[1]
 ́Age ́ cannot be read as a number for _age[1]

18See http://www.mortality.org/

.

.
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 ́Female ́ cannot be read as a number for female[1]
 ́Male ́ cannot be read as a number for male[1]
 ́Total ́ cannot be read as a number for total[1]
(1,500 observations read)
. drop total
. rename male rate1
. rename female rate2
. reshape long rate, i(_year _age)
(note: j = 1 2)
Data wide -> long

Number of obs. 1500 -> 3000
Number of variables 4 -> 4
j variable (2 values) -> _j
xij variables:

rate1 rate2 -> rate

. rename _j sex

. gen prob=exp(-rate)

. label data "U.S. death rates 1999-2013 from http://www.mortality.org/"

. label variable rate "Death rate"

. label variable prob "Survival probability"

. label variable _year "Year of death"

. label variable _age "Age"

. label variable sex "Sex (1=Male, 2=Female)"

. sort _year sex _age

. save popmort9913, replace
file popmort9913.dta saved

The following is a list of the first five rows in the population mortality file.

. use popmort9913, clear
(U.S. death rates 1999-2013 from http://www.mortality.org/)
. list sex _year _age prob in 1/5, noobs

sex _year _age prob

1 1999 0 .9920895
1 1999 1 .9994271
1 1999 2 .9995911
1 1999 3 .999693
1 1999 4 .999764

The Human Mortality Database produces a “standard” population mortality file. In
contrast, CINA Survival uses a SEER-specific population mortality file but it requires
SEER*Stat Database ID 01587 (Johnson et al.

.

, 2016b

.

, 15, 18). A similar better matched
population mortality file can be created by modeling cohort data (Dickman et al.

.

, 2016

.

,
97-98). Here, the cohort would be the 1999-2003 FCDS analysis dataset. To create such
non-standard population mortality files is beyond the scope of this technical report.
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Chapter 2

Survival Analysis

2.1 “Model”: Estimating crude survival
2.1.1 The cause-specific framework
Data analysis should be divided between data management and statistical analysis.
With a saved dataset, it is time to begin the survival analysis. As explained in Dickman
and Coviello

.

(2015

.

), crude (and net) survival can be estimated in either the cause-specific
or the relative framework. The survival analysis commands stcomlist, stcompet,
stpm2cif, stpm2cr and stcrprep are for estimating crude survival in the cause-specific
framework. I do not provide an example because this approach is the most complicated,
and it is the least likely to apply to FCDS; it is only valid if FCDS is used in the study
context of RRCT or CER.

2.1.2 The relative framework
As shown in Dickman and Coviello

.

(2015

.

, 204–205), the command strs with the cuminc
option can estimate crude survival in the relative framework using life tables. The first
listed cancer site in the FCDS annual reports is lung cancer. Lung cancer, also known as
lung carcinoma, is a malignant lung tumor characterized by uncontrolled cell growth in
tissues of the lung. The vast majority (85%) cases of lung cancer are due to long-term
tobacco smoking. Lung cancer is the most common cause of cancer-related death in
men and second most common in women after breast cancer. This subsection follows
the example of Dickman and Coviello

.

(2015

.

, 204–205) but it uses lung cancer instead
of colon cancer. Here is a 10-year life table for cancer patients aged 75 or over:

. use doh if site_group==36, clear
(Dataset for Survival Analysis, DX Years 1999-2013)
. count if surv_mon_1787==0 // stset will drop alive with no survival time

21,036
. stset surv_year, failure(vital_1760==0) id(pid_20) // or surv_mon_1787, scale(12)

id: pid_20
failure event: vital_1760 == 0

obs. time interval: (surv_year[_n-1], surv_year]
exit on or before: failure
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173575 total observations
21036 observations end on or before enter()

152539 observations remaining, representing
152539 subjects
127205 failures in single-failure-per-subject data

307344.167 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 14.91667

. strs using popmort9913 if age_dx_230>74 , breaks(0(1)10) ///
> diagage(age_dx_230) diagyear(dx_year) ///
> cuminc mergeby(_year sex _age) list(cr_e2 ci_dc ci_do)

failure _d: vital_1760 == 0
analysis time _t: surv_year

id: pid_20
No late entry detected - p is estimated using the actuarial method

start end cr_e2 ci_dc ci_do

0 1 0.4698 0.5125 0.0490
1 2 0.3141 0.6530 0.0735
2 3 0.2468 0.7096 0.0906
3 4 0.2077 0.7400 0.1043
4 5 0.1811 0.7592 0.1159

5 6 0.1618 0.7719 0.1259
6 7 0.1456 0.7817 0.1348
7 8 0.1311 0.7896 0.1426
8 9 0.1220 0.7940 0.1496
9 10 0.1114 0.7986 0.1559

In the output above, 1 minus cr_e2 is the net probability of death due to lung cancer.
The columns ci_dc and ci_do are the crude probabilities of death (cumulative incidence)
due to lung cancer and due to other causes, respectively. At 10-year follow-up, strs
estimated that 80% will have died of lung cancer, 16% will have died of causes other
than lung cancer, and 4% will be alive. In the hypothetical net survival scenario where
patients can die only of lung cancer, strs estimated that 89% of patients will have died
of lung cancer and 11% will not have died of lung cancer within 10 years.

2.2 “Model”: Estimating net survival
2.2.1 The cause-specific framework
As explained in Dickman and Coviello

.

(2015

.

), net (and crude) survival can be estimated
in either the cause-specific or the relative framework. The cause-specific framework has
censored survival times of those who die of other causes than cancer, and standard
estimates apply. To be able to focus on the statistical problem, the example remains
lung cancer.

After you have stset your data, there are five things you should do: 1. Look at
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the stset output. Originally, I had the message “17 multiple records at same instant
PROBABLE ERROR” “(surv_mon_1787[_n-1]==surv_mon_1787)” The reason was
I mistakenly read sequence number as having only one character. The first piece of the
output is a complete accounting for the records in the data.

2. List some of your data. stset does not change any existing data. All it does
is define the new variables _t0, _t, _d, and _st. _t0 and _t record the time span in
analysis-time units. _d records the outcome at the end of each time span. _st records
whether the observation is relevant to the current analysis. Often you have cleaned the
data to the point where all observations should be relevant to the analysis, like here.
Then, there is no need to list data.

3. Type stdescribe to describe the dataset. Everyone entered at time 0; there is
no delayed entry. The values from stdescribe are the same as simply summarizing
the time variable with the summarize command. In contrast, stsum reports summary
statistics based on analytical methods that consider censoring, delayed entry, and gaps
in history. Therefore, the median survival time is not the same for the commands
stdescribe and stsum.

. stdescribe
failure _d: vital_1760 == 0

analysis time _t: surv_year
id: pid_20

per subject
Category total mean min median max

no. of subjects 152539
no. of records 152539 1 1 1 1
(first) entry time 0 0 0 0
(final) exit time 2.014856 .0833333 .8333333 14.91667
subjects with gap 0
time on gap if gap 0 . . . .
time at risk 307344.17 2.014856 .0833333 .8333333 14.91667
failures 127205 .8339179 0 1 1

. stsum
failure _d: vital_1760 == 0

analysis time _t: surv_year
id: pid_20

incidence no. of Survival time
time at risk rate subjects 25% 50% 75%

total 307344.1743 .4138845 152539 .3333333 .9166667 2.916667

4. Type stvary if you have multiple-record (meaning multiple records per subject)
data. I do not have this, according to stdescribe.

5. Fix any problems in step 4, perhaps using stfill and streset. Not needed. The
command sts generate will create variables containing the Kaplan-Meier or Nelson-
Aalen estimates, depending on which you request. The commands sts list and sts
graph will list and graph respectively the survival, hazard, or cumulative hazard func-
tion.
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. sts list, at(15)
failure _d: vital_1760 == 0

analysis time _t: surv_year
id: pid_20

Beg. Survivor Std.
Time Total Fail Function Error [95% Conf. Int.]

0 0 0 1.0000 . . .
1 76086 76095 0.4943 0.0013 0.4918 0.4969
2 45583 24516 0.3227 0.0012 0.3203 0.3251
3 32427 9855 0.2486 0.0011 0.2463 0.2508
4 24551 5282 0.2057 0.0011 0.2035 0.2078
5 19110 3309 0.1762 0.0010 0.1742 0.1783
6 15063 2250 0.1541 0.0010 0.1521 0.1561
7 11801 1654 0.1360 0.0010 0.1340 0.1379
8 9157 1285 0.1200 0.0010 0.1181 0.1219
9 6958 899 0.1071 0.0010 0.1052 0.1090

10 5150 705 0.0951 0.0010 0.0933 0.0970
11 3612 559 0.0835 0.0010 0.0816 0.0853
12 2458 360 0.0740 0.0010 0.0721 0.0759
13 1482 226 0.0656 0.0010 0.0636 0.0676
14 686 144 0.0571 0.0011 0.0549 0.0593
15 57 66 . . . .

Note: Survivor function is calculated over full data and evaluated at indicated
times; it is not calculated from aggregates shown at left.

. sts graph, risktable(0(5)15) ci noorigin
failure _d: vital_1760 == 0

analysis time _t: surv_year
id: pid_20

. graph export survival_function.eps, as(eps) replace
(file survival_function.eps written in EPS format)

(Continued on next page)
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Figure 2.1: Kaplan-Meier survival function

Semiparametric survival results: Stata’s stcox command fits the semiparametric Cox
proportional hazards models. The command is flexible. For example, stcox can handle
fractional polynomials, and it handles ties in four different ways. You type stcox
followed by the independent variables. You can specify the nohr option for no hazard
ratios if you need to compare results reported as coefficients. However, hazard ratios
are easier to interpret. In the example model, a male lung cancer patient faces a 24%
larger hazard rate than a female lung cancer patient.

. stcox male
failure _d: vital_1760 == 0

analysis time _t: surv_year
id: pid_20

Iteration 0: log likelihood = -1421254.8
Iteration 1: log likelihood = -1420513.4
Iteration 2: log likelihood = -1420513.4
Refining estimates:
Iteration 0: log likelihood = -1420513.4
Cox regression -- Breslow method for ties
No. of subjects = 152,539 Number of obs = 152,539
No. of failures = 127,205
Time at risk = 307344.1743

LR chi2(1) = 1482.78
Log likelihood = -1420513.4 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

male 1.24211 .0070129 38.40 0.000 1.22844 1.255931
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A first test of the proportional-hazards assumption is the linktest. If our model really
is specified correctly, then the linear predicted value _hat should be statistically signifi-
cant, and the linear predicted value squared _hatsq would have no explanatory power.
This is what linktest does:

. linktest
failure _d: vital_1760 == 0

analysis time _t: surv_year
id: pid_20

note: _hatsq omitted because of collinearity
Iteration 0: log likelihood = -1421254.8
Iteration 1: log likelihood = -1420513.4
Iteration 2: log likelihood = -1420513.4
Refining estimates:
Iteration 0: log likelihood = -1420513.4
Cox regression -- Breslow method for ties
No. of subjects = 152,539 Number of obs = 152,539
No. of failures = 127,205
Time at risk = 307344.1743

LR chi2(1) = 1482.78
Log likelihood = -1420513.4 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

_hat 1 .026041 38.40 0.000 .9489606 1.051039
_hatsq 0 (omitted)

The prediction squared is omitted from the output because of collinearity. I conclude
that the prediction squared has explanatory power, so the model is specified wrongly.

Basic parametric models in Stata are fit using the streg command. predict af-
ter streg is used to generate a new variable containing predicted values or residuals.
Flexible parametric models can be fit with the user-written commands stgenreg and
stpm2. For multistate survival analysis, Stata has the user-written module multistate
which includes the data management commands msset, the estimation command stms,
and the post-estimation command predictms. For joint modeling of longitudinal and
survival data, Stata has the user-written command stjm.

sts test tests equality of survivor functions. The user-written command verswlr is
a versatile weighted log-rank test. The user-written command strmst2 provides RMST
measures as an alternative to hazard ratios.

2.2.2 The relative framework
Relative survival can be used with lung cancer data (Hinchcliffe et al.

.

, 2012

.

). Stroup
et al.

.

(2014

.

) examined the impact of state-specific life tables on relative survival. They
found that differences between relative survival based on US life tables and state life
tables were small, and state-based estimates were less reliable than US-based estimates
for older populations aged 85+. For observed survival only, the Stata life-table command
is ltable which treats censored observations as if they were withdrawn halfway through
the interval. For estimating net survival using a life-table approach, Stata has two
user-written commands: strs and stnet. stnet by Coviello et al.

.

(2015

.

) is slightly
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faster because it is optimized for the Pohar-Perme estimator. Below is the estimated
net survival in the relative framework using stnet. It is crude as opposed to age-
standardized, rather than as opposed to net. Crude estimates are only useful as a
possible intermediate step towards age-standardized estimates. All the estimates in the
appendix are age standardized.

. stnet using popmort9913 if inrange(dx_year,1999,2003), ///
> mergeby(_year sex _age) ///
> breaks(0(0.083333333)10) diagdate(date_dx) birthdate(dob) listyearly

failure _d: vital_1760 == 0
analysis time _t: surv_year

id: pid_20
Cumulative net survival according to Pohar Perme, Stare and Estève method.

start end n d cns locns upcns secns

.9167 1 25813 1276 0.5023 0.4978 0.5068 0.0023
1.917 2 15752 0 0.3333 0.3289 0.3376 0.0022
2.917 3 12416 217 0.2670 0.2628 0.2712 0.0021
3.917 4 10233 116 0.2291 0.2250 0.2332 0.0021
4.917 5 8780 0 0.2061 0.2021 0.2102 0.0021

5.917 6 7698 0 0.1880 0.1840 0.1921 0.0021
6.917 7 6843 0 0.1740 0.1699 0.1781 0.0021
7.917 8 6141 0 0.1629 0.1587 0.1671 0.0021
8.917 9 5587 45 0.1553 0.1510 0.1597 0.0022
9.917 10 5041 34 0.1494 0.1449 0.1539 0.0023

It was a hassle to use the SAS macro for creating survival time in months. If one has
recorded time t in completed years, then t+0.5 will approximate the person-time at
risk. The main reason for adding 0.5 to all survival times is to avoid the zero survival
times being ignored. Below is the estimated net survival using a simpler variable for
survival time in months, surv_mm, that does not depend on the SAS macro for imputing
missing date of diagnosis or date of last contact. The variable surv_mm has an average
of 18.1 instead of 21.3 or about 3 months less than when the SAS macro is used. The
stnet estimates are the same if survival times instead are grouped in days as in exit,
orig(dx); this is not shown here but see Coviello et al.

.

(2015

.

, 180) for an example.

. gen exit = date(date_lc_1750,"YMD") //
(5 missing values generated)
. drop if mi(exit)
(5 observations deleted)
. gen surv_mm = floor((exit-date_dx)/365.24*12)+.5 // assumes record_order
. su surv_mon_1787 surv_mm

Variable Obs Mean Std. Dev. Min Max

surv_mo~1787 173,570 21.24467 32.21551 0 179
surv_mm 173,570 18.15616 27.20197 .5 215.5

.

. stset surv_mm, failure(vital_1760==0) id(pid_20) scale(12) // stset surv_mm
id: pid_20

failure event: vital_1760 == 0
obs. time interval: (surv_mm[_n-1], surv_mm]
exit on or before: failure

31



t for analysis: time/12

173570 total observations
0 exclusions

173570 observations remaining, representing
173570 subjects
147828 failures in single-failure-per-subject data

262613.667 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 17.95833

. stnet using popmort9913 if inrange(dx_year,1999,2003), ///
> mergeby(_year sex _age) breaks(0(0.08333)10) ///
> diagdate(date_dx) birthdate(dob) listyearly

failure _d: vital_1760 == 0
analysis time _t: surv_mm/12

id: pid_20
Cumulative net survival according to Pohar Perme, Stare and Estève method.

start end n d cns locns upcns secns

1 1.083 23062 1198 0.4100 0.4058 0.4142 0.0021
2 2.083 14064 411 0.2680 0.2641 0.2719 0.0020
3 3.083 10377 264 0.2080 0.2044 0.2117 0.0019
4 4.083 8153 133 0.1737 0.1702 0.1773 0.0018
5 5.083 6703 102 0.1507 0.1473 0.1542 0.0018

6 6.083 5509 80 0.1316 0.1282 0.1350 0.0017
7 7.083 4544 54 0.1156 0.1122 0.1190 0.0017
8 8.083 3721 63 0.1004 0.0971 0.1039 0.0017
9 9.083 3016 47 0.0879 0.0845 0.0913 0.0017

Use the by() option together with standstrata() to produce age-standardized esti-
mates for each sex. surv_mm is still being used.

. stnet using popmort9913 if inrange(dx_year,1999,2003) [iw=icss1], ///
> mergeby(_year sex _age) breaks(0(0.083333333)10) ///
> diagdate(date_dx) birthdate(dob) notables ///
> standstrata(agegr) by(sex) savstand(agestand_sex__NS, replace)

failure _d: vital_1760 == 0
analysis time _t: surv_mm/12

id: pid_20
file agestand_sex__NS.dta saved

The following command produces figure 1, which illustrates age-standardized net sur-
vival (NS) and 95

. use agestand_sex__NS, clear

. twoway (rarea locns upcns end, col(gs10)) ///
> (line cns end, lc(black) lw(medthick) lp(l)), ///
> by(sex, legend(off)) xlabel(0(2)10) xtitle("Years from diagnosis") ///
> ytitle("Net survival") ylabel(0(0.2)1, format(%2.1f)) ///
> saving(net_survival.gph, replace)
(file net_survival.gph saved)
. graph export net_survival.eps, replace // export .gph graph to .eps
(file net_survival.eps written in EPS format)
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Figure 2.2: Net survival by sex for adult lung cancer cases diagnosed in Florida from
1999-2003

It is possible to do more up-to-date period and hybrid estimation. See Coviello et al.

.

(2015

.

, 181-183). However, again, the cohort approach is recommended when publishing
standard and routine life tables, and when making international comparisons (UKIACR

.

,
2016

.

, 9).

2.3 “Visualize”: How to construct publication qual-
ity tables and graphs

The FCDS annual reports list ten cancer sites or groups: lung and bronchus, prostate,
breast, colectoral, bladder, head and neck, non-Hodgkin, melanoma, ovary, and cervix.
The main demographic groups are sex (female, male), race (black, white), and age-group
(0-14, 15-39, 40-64, and 65+). Another important variable is stage group (localized,
regional, distant, unknown).

. use doh, clear
(Dataset for Survival Analysis, DX Years 1999-2013)
. stset surv_year, failure(vital_1760==0) id(pid_20)

id: pid_20
failure event: vital_1760 == 0

obs. time interval: (surv_year[_n-1], surv_year]
exit on or before: failure

1238598 total observations
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67587 observations end on or before enter()

1171011 observations remaining, representing
1171011 subjects
564240 failures in single-failure-per-subject data

5452100.5 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 14.91667

. stsum, by(site_10group)
failure _d: vital_1760 == 0

analysis time _t: surv_year
id: pid_20

incidence no. of Survival time
site_1~p time at risk rate subjects 25% 50% 75%

Lung & B 307344.1667 .4138845 152539 .3333333 .9166667 2.916667
Prostate 1266102.667 .044479 199017 7.25 13.08333 .

Breast 1085161.75 .0451656 175473 6.583333 14.25 .
Colorect 549577.6666 .1114383 114906 1.833333 6.25 14.41667
Bladder 288064 .0968153 57523 2.583333 7.583333 14.5
Head & N 188948.5833 .125341 44091 1.416667 5.583333 13.58333
Non-Hodg 204868.4167 .1046672 44918 1.583333 7.416667 14.91667
Melanoma 278795.9166 .0513709 48633 5.416667 14.08333 .

Ovary 64375.33334 .1563642 16487 1.25 3.666667 12.25
Cervix 65695.50001 .0730339 12323 2.083333 13.75 .
Other 1153166.5 .1459139 305101 .75 4.083333 14.91667

total 5452100.5 .1034904 1171011 1.5 7.5 .

The life tables in the monograph provided the estimated 1-, 5-, and 10-year standardized
net survival rate (%) for four groups: overall, by sex, by race, and by stage. The
reporting is similar to the 2007 SEER survival monograph (Ries et al.

.

, 2007

.

) and to
the 2016 CINA survival monograph (Johnson et al.

.

, 2016a

.

). The SEER monograph has
more details such as also 2-, 3- and 8–year survival rates but it only reports crude rates
(i.e., not age-standardized). The newer CINA monograph reports age-standardized rates
but only for 5-year survival. The CINA monograph reports crude rates by age group
which, by not being age standardized, are difficult to interpret.1

.

What is not included is as important as what is included. Three types survival data
are omitted on purpose. First, crude rates are omitted because standardized rates are
more useful for comparison. Second, all cancer groups combined are omitted because
there is no standard on how to do this. Third, cancer for children are omitted.

Excellent tables and graphs are nearly always multivariate which requires some more
work. There are two possible approaches. One approach, which is not used but can be
useful as a last resort, is to create a matrix of statistics using frmttable. The other
approach, which I use because it is easier, is to create a dataset of the life tables and
then use tabout (version 3.0.2 beta).

Because there are four separate survival analyses for each of the ten sites, we need to
run stnet 40 times and combine the 40 life tables into ten datasets. The best solution
is to omit output, and repeat over the ten site groups using forvalues. To access the

1The user-written Stata command distrate does not allow age-standardization by age; the output
is the same as crude. Personal communication with Enzo Coviello on April 22, 2016.
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programming code, please email the author. The ten datasets are then appended into
one dataset named NS.dta. An appendix to the supplement (Alexandersson

.

, 2017a

.

)
provides the monograph tables with added 95% confidence interval.

2.4 “Communicate”: Discussion and conclusion
This monograph uses literate programming. The original idea behind literate pro-
gramming (Knuth

.

, 1984

.

) was to have separate languages for the code (“tangle”), the
documentation (“weave”), and the environment. It required learning three languages to
write a program: Pascal for the code, TeX for documentation, and WEB for embedding
the code. Very few people used literate programming, probably because very few people
are willing to learn three languages just to get their program to work. Literate program-
ming concepts have been extended and expanded in the area of reproducible research.
The term reproducible research is usually credited to Claerbout (Schwab et al.

.

, 2000

.

).
Claerbout’s framework centered around UNIX makefiles which describe file dependen-
cies. Knuth’s embedded-code approach and Claerbout’s make-file approach need not be
mutually exclusive. Modern implementations of literate programming in data analysis
are more interactive and simpler. The main choice for the markup language is between
Markdown and LaTeX. The point of Markdown is to achieve most (perhaps 80%?) of
what can be done in LaTeX using much simpler syntax, and to not limit the output
format to PDF only.

The Stata program used is texdoc (Jann

.

, 2016

.

) which is based on the markup
language LaTeX and on the Stata program sjlatex. Stata has markdoc (Haghish

.

,
2016

.

) which is based on Markdown. But it has less features than R Markdown, and
is less reliable. The largest feature missing is nice table output. The markdoc table
output is in plain text rather than in the default Stata Markup Control Language
(SMCL). Another useful feature missing in markdoc is footnotes. A Stata master do-file
“DOH20170630.do” creates the tex files, including a master tex-file “DOH20170630.tex”.
Any mainstream LaTeX distribution such as MikTeX or TeX Live (PC) or ShareLaTeX
(www.sharelatex.com

.

) will typeset the PDF with the bibliography from the tex files.
MikTex and TeX Live have the advantage of not requiring a file upload before compiling.
I recommend ShareLaTex for LaTeX beginners and for LaTeX troubleshooting because
it does not require installation, and warning and error messages are more helpful.

In addition to concerns about reproducibility, there are also reporting guidelines.
The three most general relevant reporting guidelines for scientific journals and similar
technical audiences are CONSORT, STROBE, and RECORD. CONSORT applies to
randomized trials, that is, to studies that estimate crude survival in the cause-specific
framework. STROBE applies to non-routine observational studies, that is, to studies
that estimate net survival in the cause-specific framework or crude survival in the relative
framework. RECORD applies to routine observational studies, that is, to studies that
estimate net survival in the relative framework. Since the focus in this monograph
is on routine reporting, it is worth referencing RECORD (Benchimol et al.

.

, 2015

.

).
RECORD was created as an extension to the STROBE statement to address reporting
items specific to observational studies using routinely collected health data. STROBE
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consists of a checklist of 22 items, and RECORD consists of a checklist of 13 related
items.

To summarize, the technical report showed how to do survival analysis in Stata using
FCDS data in a reproducible data science framework. The focus was on net survival in a
relative framework using a life-table version of Pohar Perme estimates. The NAACCR-
defined survival variables required a SAS macro, and it resulted in about 3 months longer
survival time in an example of lung cancer. The companion monograph (Alexandersson

.

,
2017b

.

) will provide 1-, 5-, and 10-year net survival rates in the relative framework for
ten major cancer site groups of adult patients diagnosed in Florida 1999-2003. The net
survival rates in Florida are mostly somewhat better than in the U.S. combined.

The main advantage of data science is reproducibility. The main advantage of Stata
here is that only Stata has implemented a life-table (actuarial) version of the Pohar
Perme estimator of net survival. Life-table estimation of net survival is critical to
FCDS because other approaches tend to overestimate survival.

This technical report and the companion monograph have several limitations. Here
are ten known limitations, listed in approximate order of importance depending on
interest:

1. Did not provide survival rate trends – Cancer trends should be interpreted by
examining incidence, mortality, and survival simultaneously over the past sev-
eral years. Therefore, for example, the Cancer Registry of Norway uses a three-
year period window in the annual report “Cancer in Norway” (https://www.
kreftregisteret.no/Generelt/Publikasjoner/Cancer-in-Norway/

.

). A seem-
ingly more common approach is to compute an annual percentage change (APC)
or to describe survival trends in isolation.

2. No sensitivity analysis of using different life tables – Florida-specific tables are
available in NAACCR’s ”CiNA Deluxe Analytic File”. Angela Mariotto at NCI is
working on county-SES life tables.

3. Dependency on SAS macro

4. Excluded children

5. Did not allow for multiple primary cancers per patient – Two dominant rules for
multiple primary cancers are SEER and IARC/IACR. SEER MP rules are the
standard in the U.S.

6. Did not create more updated estimates – This can be done with a period, rather
than a cohort approach.

7. Did not do flexible parametric modeling – It is possible to create a yearly report
with an in-depth 5-year survival analysis for a cancer of interest. Additional
useful measures are loss of life expectancy (average survival time) and, for quality
control, conditional net survival. Consider cause-specific survival for cancers with
screening.

8. Did not discuss reporting guidelines in detail
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9. Did not compare results with other than most recent CINA survival – Need to be
more comparative whether with other states or with the U.S.

10. Did not compare alternatives to Stata beyond the supplement

From the strengths and limitations, all three main stakeholders can learn a lesson.

• DOH: DOH should allow FCDS to release complete birth dates or at least birth
months.

• FCDS: FCDS should continue to automate data requests and to improve routine
reporting. FCDS needs continuing education. The companion monograph showed
that the life-table estimation of net survival in a relative framework is useful for
routine reporting.

• Data requestors: Data requests must carefully balance the need for getting all
needed data for survival analysis against overreach.

There are no books yet on population-based cancer survival analysis but, according
to Paul Dickman, a book is expected in 2018 (Dickman et al.

.

, 2018

.

). Though this
technical report added a lot of details to the companion monograph, the main advantage
is more reproducible research. Hopefully, this technical report will be helpful not only
for DOH and FCDS but also for requestors wanting to do survival analysis of FCDS.
Feedback on FCDS publications, interactive statistics, and on data request procedures is
always welcomed. For questions about the monograph and this technical report, please
contact the author.
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Appendix A

Sensitivity analysis

A.1 Introduction
It is important to explain the sensitivity of the results or “what if?” questions. Wimber-
ley et al.

.

(2013

.

) showed how to use Stata for thought experiments based on simulations.
The key assumption of net survival in the relative framework is appropriate life tables.
Schaffar et al.

.

(2017

.

) found that the use of different life tables did not compromise net
survival in the relative framework for colorectal, lung, melanoma and breast cancer.
By contrast, a relatively small error in cause of death led to a large change in the net
survival estimate. Schaffar et al.

.

(2017

.

) used data of 4285 women in the Geneve Cancer
Registry. Below, the sensitivity analysis of the net survival results in the monograph
instead will use data directly on less critical assumptions and for one cancer site only
which is more limiting but simpler. Four examples will be provided for lung cancer data.
The first example uses full birth dates instead of birth year to illustrate a small bias of
using birth year only. The second example uses strs instead of stnet to illustrate a
small difference of using different life-table formulas. The third example uses survival
time without imputed missing values to illustrate the importance of missing survival
times. The final example uses incomplete survival months to illustrate the importance
of using completed survival months.

A.2 Example 1: What if you use full birth dates?
To enable reproducible results for interested data requestors, the monograph and this
technical report have used birth year only, nut full birth dates. However, it would be
interesting to have some kind of measure of the impact of not being able to use full
birthdates. The first step is to get the variable, which is stored in the PATIENT table,
and to restrict the analysis dataset to lung cancer.

. odbc load PATIENT_ID PATIENT_DATE_OF_BIRTH, ///
> user(webuser) password( ̀password )́ dsn(Oracle64) /// connect_options
> datestring clear table("PATIENT")
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. rename PATIENT_ID pid_20

. gen dob_orig = date(PATIENT_DATE_OF_BIRTH, "YMD")
(1,140 missing values generated)
. label variable dob_orig "Patient birthdate (date)"
. drop PATIENT_DATE_OF_BIRTH
. format dob_orig %d
. merge 1:m pid_20 using doh, keep(match) nogen
(label sexlab already defined)
(label racelab already defined)
(label stagelab already defined)

Result # of obs.

not matched 0
matched 1,238,598

. keep if site_10group==1 // lung cancer
(1,065,023 observations deleted)
. gen exit = date(date_lc_1750,"YMD")
(5 missing values generated)
. format exit %d
. drop if mi(exit)
(5 observations deleted)
. gen surv_mm = floor((exit-date_dx)/365.24*12)+.5
. save temp, replace
file temp.dta saved

A seminal reference in favor of using full dates is (Woods et al.

.

, 2012

.

). The article
showed a 1-5% bias in 1-year net survival of colorectal, breast, and ovary cancer if
survival times are only provided in months, not days. The problem of birth month
and birth date not being releasable is much smaller because the survival times are
continuous. The problem instead is that the matching to life tables may be off by a
year of age. In the monograph, Tables A.1 and A.2 show that the 1-, 5-, and 10-year
age-standardized net survival rates for lung cancer were 50.5%, 20.9%, and 15.3%. The
only difference when using full birth dates is that the 10-year rate changes by 0.2%,
from 15.33% to 15.35%. Restricted birth dates not only result in a small bias but also
introduce operational problems, as Woods et al.

.

(2012

.

, E1121) noted, by introducing
avoidable complexity into the quality control of the data, a crucial component of robust
comparisons.

. use temp, clear

. stset surv_year, failure(vital_1760==0) id(pid_20)
id: pid_20

failure event: vital_1760 == 0
obs. time interval: (surv_year[_n-1], surv_year]
exit on or before: failure

173570 total observations
21036 observations end on or before enter()

152534 observations remaining, representing
152534 subjects
127205 failures in single-failure-per-subject data

307286.5 total analysis time at risk and under observation
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at risk from t = 0
earliest observed entry t = 0

last observed exit t = 14.91667
. tempfile temp1 temp2
. qui stnet using popmort9913 if inrange(dx_year,1999,2003) [iw=icss1], ///
> mergeby(_year sex _age) breaks(0(0.083333333)10) ///
> diagdate(date_dx) birthdate(dob) notables standstrata(agegr) ///
> savstand( t̀emp1 ,́ replace) // source
. qui stnet using popmort9913 if inrange(dx_year,1999,2003) [iw=icss1], ///
> mergeby(_year sex _age) breaks(0(0.083333333)10) ///
> diagdate(date_dx) birthdate(dob_orig) notables standstrata(agegr) ///
> savstand( t̀emp2 ,́ replace) // std total
. clear
. append using  t̀emp1 ́  ̀temp2 ,́ gen(source)
. list source end cns locns upcns if inlist(end,1,5,10), noobs

source end cns locns upcns

1 1 0.5046 0.4999 0.5093
1 5 0.2090 0.2048 0.2131
1 10 0.1536 0.1490 0.1583
2 1 0.5046 0.4999 0.5092
2 5 0.2089 0.2048 0.2131

2 10 0.1535 0.1489 0.1581

A.3 Example 2: What if you ignore birth dates?
The user-written Stata commands strs with the option pohar and stnet have both
implemented the Pohar Perme estimator of net survival. The strs command imple-
ments two different formulas, actuarial and hazard transformation, which give similar
results. The Pohar Perme estimator with the hazard transformation approach, ht op-
tion, should be identical to the formula in stnet (Dickman and Coviello

.

, 2015

.

, 191).
However, only stnet requires the date of birth (for creating age at diagnosis in years).
Instead of the net survival rates 50.5%, 20.9%, and 15.3%, strs with the options pohar
ht estimate the rates 49.1%, 21.3%, and 15.6%. Therefore, restricted birth dates are
better than no birth dates for estimating net survival.

. use temp, clear

. tempfile temp1 temp2

. qui stset surv_year, failure(vital_1760==0) id(pid_20)

. qui strs using popmort9913 if inrange(dx_year,1999,2003) [iw=icss1], ///
> mergeby(_year sex _age) diagage(age_dx_230) diagyear(dx_year) ///
> breaks(0(0.083333333)10) standstrata(agegr) pohar ///
> savstand( t̀emp1 ,́ replace) // actuarial as in stns
. qui strs using popmort9913 if inrange(dx_year,1999,2003) [iw=icss1], ///
> mergeby(_year sex _age) diagage(age_dx_230) diagyear(dx_year) ///
> breaks(0(0.083333333)10) standstrata(agegr) pohar ///
> savstand( t̀emp2 ,́ replace) ht // hazard transformation as in stnet
. clear
. append using  t̀emp1 ́  ̀temp2 ,́ gen(source)
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. list source end cns_pp lo_cns_pp hi_cns_pp if inlist(end,1,5,10), noobs

source end cns_pp lo_cns~p hi_cns~p

1 1 0.5037 0.4990 0.5084
1 5 0.2075 0.2034 0.2116
1 10 0.1507 0.1463 0.1553
2 1 0.4912 0.4866 0.4959
2 5 0.2130 0.2088 0.2172

2 10 0.1559 0.1513 0.1605

A.4 Example 3: What if you ignore the SAS macro
to create survival months?

What happens if you ignore the SAS macro “CalculateSurvivalTimeInMonths.sas” to
create survival months? Recall that the formula for surv_mm added 0.5 to avoid the zero
survival times being ignored, and that surv_mon_1787 is for completed survival months.
To get comparable results with surv_mon_1787, therefore, values with 0.5 should not
be used. The 1-, 5-, and 10-year net survival rates when using surv_mon_1787 are, as
mentioned, 50.5%, 20.9%, and 15.3%. The rates when instead using surv_mm are 49.1%,
17.3%, and 8.9%. The SAS macro creates a record order variable, which can somewhat
easily be created in Stata. More importantly, the SAS macro standardizes specification
of missing months and days for date or diagnosis and date of last contact. To have
equivalent or better Stata code would be a welcomed improvement.

. use temp, clear

. tempfile temp1

. stset surv_mm if surv_mm!=0.5, failure(vital_1760==0) id(pid_20) scale(12)
id: pid_20

failure event: vital_1760 == 0
obs. time interval: (surv_mm[_n-1], surv_mm]
exit on or before: failure

t for analysis: time/12
if exp: surv_mm!=0.5

173570 total observations
23057 ignored at outset because of -if <exp>-

150513 observations remaining, representing
150513 subjects
127570 failures in single-failure-per-subject data

261652.958 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 17.95833

. qui stnet using popmort9913 if inrange(dx_year,1999,2003) [iw=icss1], ///
> mergeby(_year sex _age) breaks(0(0.083333333)10) ///
> diagdate(date_dx) birthdate(dob) notables standstrata(agegr) ///
> savstand( t̀emp1 ,́ replace) listyearly // source
. use  ̀temp1 ́, clear
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. list end cns locns upcns if inlist(end,1,5,10), noobs

end cns locns upcns

1 0.4905 0.4857 0.4953
5 0.1729 0.1689 0.1768
10 0.0886 0.0849 0.0924

A.5 Example 4: What if you include incomplete sur-
vival months?

What happens if you include incomplete survival months? The SAS macro creates com-
pleted survival months. You may want to instead include incomplete survival months.
The answer is that the survival rates could drop dramatically. The 1-, 5-, and 10-year
rates with incomplete survival months drop from 50.5%, 20.9%, and 15.3% to 43.6%,
15.3%, and 7.9%. It does not matter for the life-table approach if survival time is
recorded in days or in months (Coviello et al.

.

, 2015

.

, 180). The trick to avoid failures at
time t=0 if you record survival time in days is that you have to move the days forward a
little, like was done for the variable surv_mm; the code below uses a smaller adjustment
number 0.125 instead of 0.5.1

.

. use temp, clear

. tempfile temp1

. stset exit, origin(date_dx) failure(vital_1760==0) id(pid_20) scale(365.24)
id: pid_20

failure event: vital_1760 == 0
obs. time interval: (exit[_n-1], exit]
exit on or before: failure

t for analysis: (time-origin)/365.24
origin: time date_dx

173570 total observations
266 observations end on or before enter()

173304 observations remaining, representing
173304 subjects
147828 failures in single-failure-per-subject data

262445.795 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 17.91972

. replace exit = exit + 0.125
(173,570 real changes made)
. stset exit, origin(date_dx) failure(vital_1760==0) id(pid_20) scale(365.24)

id: pid_20
failure event: vital_1760 == 0

1William Gould, head of Stata, discussed this trick in 2007 at http://www.stata.
com/statalist/archive/2007-05/msg00124.html

.

and it was discussed in more detail in
2014 at http://www.statalist.org/forums/forum/general-stata-discussion/general/
306276-survival-analysis-failure-at-time-zero

.

.
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obs. time interval: (exit[_n-1], exit]
exit on or before: failure

t for analysis: (time-origin)/365.24
origin: time date_dx

173570 total observations
0 exclusions

173570 observations remaining, representing
173570 subjects
147828 failures in single-failure-per-subject data

262505.197 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 17.92007

. qui stnet using popmort9913 if inrange(dx_year,1999,2003) [iw=icss1], ///
> mergeby(_year sex _age) breaks(0(0.083333333)10) ///
> diagdate(date_dx) birthdate(dob_orig) notables standstrata(agegr) ///
> savstand( t̀emp1 ,́ replace) listyearly //
. use  ̀temp1 ́, clear
. list end cns locns upcns if inlist(end,1,5,10), noobs

end cns locns upcns

1 0.4357 0.4313 0.4402
5 0.1535 0.1499 0.1570
10 0.0789 0.0757 0.0822
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